Stable underwater superoleophobic and low adhesive polypyrrole nanowire mesh in highly corrosive environments.

نویسندگان

  • Chao Teng
  • Shuangbao Wang
  • Xianyong Lu
  • Jianfeng Wang
  • Guangyuan Ren
  • Ying Zhu
  • Lei Jiang
چکیده

Underwater superoleophobic materials with low adhesion have been widely researched owing to their self-cleaning and anti-corrosive properties. In this study, polypyrrole (PPy) nanowire meshes have been successfully fabricated by in situ electrochemical polymerization on stainless steel mesh substrates in the presence of phosphate buffered saline as both an electrolyte and a dopant. PPy nanowire meshes have high oil contact angles (above 150°) and low sliding angles (less than 10°), and they show underwater superoleophobicity with an excellent self-cleaning performance, not only in pure water, but also in highly corrosive aqueous solutions, including salt solutions, strong acids or basic solutions. PPy nanowire meshes presented here show promise for potential applications in fields such as oil-water separation and marine oil spill clean-up.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A facile bacterial assisted electrochemical self-assembly of polypyrrole micro-pillars: towards underwater low adhesive superoleophobicity.

By taking advantage of bacterial extracellular electron transfer behavior, a facile method was developed to fabricate oriented polypyrrole micro-pillars (PPy-MP) with nanoscale surface roughness. Microbes acted as a living conductive template on which PPy was in situ polymerized. The as-prepared PPy-MP exhibit the distinctive underwater low adhesive superoleophobicity which is attributable to t...

متن کامل

A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments

Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aer...

متن کامل

Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities

There is an increasing demand in the flexible electronics industry for highly robust flexible/transparent conductors that can withstand high temperatures and corrosive environments. In this work, outstanding thermal and ambient stability is demonstrated for a highly transparent Ag nanowire electrode with a low electrical resistivity, by encapsulating it with an ultra-thin Al2O3 film (around 5.3...

متن کامل

A self-cleaning underwater superoleophobic mesh for oil-water separation

Oil-water separation has recently become a global challenging task because of the frequent occurrence of oil spill accidents due to the offshore oil production and transportation, and there is an increasing demand for the development of effective and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh t...

متن کامل

A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation

It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil-water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 21  شماره 

صفحات  -

تاریخ انتشار 2015